

EXB-C8I8 串口扩展器使用说明书

V3.0

— .	Ī	达 [品说明1	
	1.	1	产品简介1	
	1.	2	产品接口及指示灯图示2	,
_	•	典	型应用接线方式3	,
三	•	使	[用及配置3	,
	3.	1	电源输入及额外输出3	,
	3.	2	设备地址设置3	,
	3.	3	串口设置4	:
	3.	4	子串口设置5	,
	3.	5	输入输出设置6	,
	3.	6	红外学习和发送8	į
	3.	7	其他命令9)

一. 产品说明

1.1 产品简介

EXB-C8I8 串口扩展器是采用高精密级集成电路和工业级芯片集成的一款 具有串口扩展、输入输出控制及红外学习和发送的串口多用途设备。EXB-C8I8 拥有8路独立双向RS232接口,8路独立的输入输出接口,简便的红外学习功能面板和8路红外输出接口,可为用户的不同使用需求提供帮助。

EXB-C818 可通过自身的双向 RS232 接口,对矩阵、音频处理器及投影机等具有 RS232 接口设备进行控制,同时可通过自身的红外学习和红外发送功能,实现对电视机、DVD等常见统一编码方式的可红外遥控设备的控制。并且可以实现常见方式红外遥控器的解码,每台设备能够存储多达 99 条红外码。

EXB-C8I8 最多支持 15 台设备级联(每台设备的设备码不同并单独控制,若需要同时进行多台相同设备的同样操作,则可以设置为同样的设备码级联更多),每台设备自带信号中继功能,设备间级联最大距离近似于 RS232 协议支持距离。

1

1.2 产品接口及指示灯图示

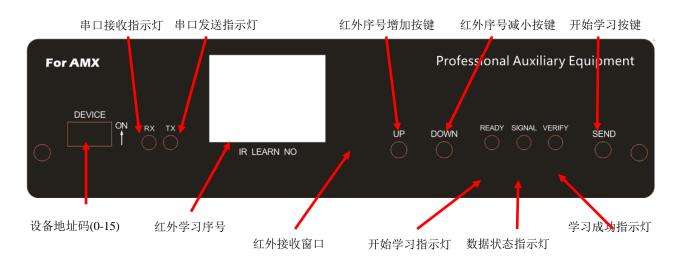


图1前面板

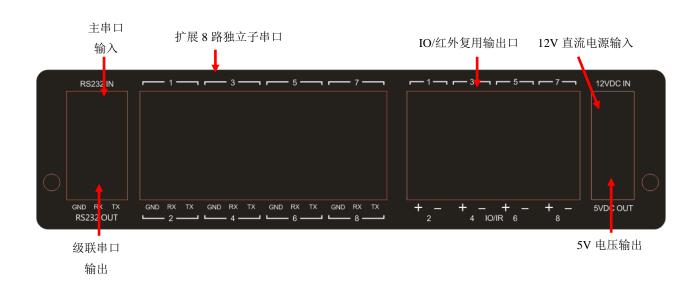


图 2 背面面板

二. 典型应用接线方式

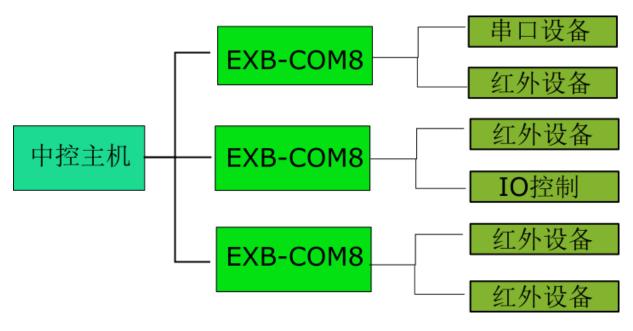


图 3 典型设备连接图

三. 使用及配置

3.1 电源输入及额外输出

EXB-C8I8 使用直流 12V, 1A 电源适配器。电源输入接口为 2pin 凤凰头,位于背面板右上角。上电后电路板中央电源指示灯亮。

背面板右下角有 5V, 100mA 额外电源输出, 可用于工程现场灵活使用。

3.2 设备地址设置

当 EXB-C8I8 级联使用时,为区分不同的设备,需要设置设备地址。设备前面板拨码开关用于设定设备地址,四位拨码开关从左到右拨上去以后分别对应于数值 1、2、4、8,设备地址的计算方式为所有拨上去的位置的数值之和,例如 1,3 位拨上去,2,4 位未拨上去,则设备地址计算为 1 + 4 = 5。设备地址是否可以随拨码开关变化即时生效可以通过指令设置:当设置为不即时生效时,设备地址更改以后,设备需要重新上电以应用新的地址,重新上电以前仍为更改之前的设备地址有效;当设置为即时生效时,拨码开关改变,设备地

址即时随之改变,无需重新上电。设置指令见3.7其他命令。

3.3 串口设置

EXB-C8I8 背面板主串口、级联输出串口以及 8 路子串口接口采用 3pin 凤凰头。接口定义方式见下图。

图 4 串口接头连接方式

和常见的 DB9 接头的对应方式见下图。可根据该图进行电缆焊接。连接方式为 DB9 接头的 RxD、TxD 分别接串口的 TxD 和 RxD, DB9 的 GND 与串口的 GND 相连。

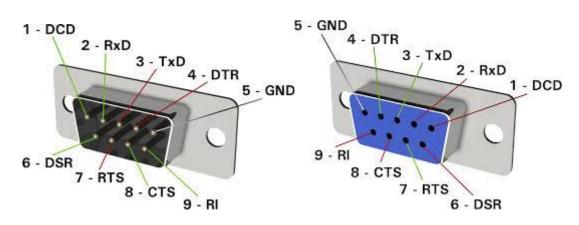


图 5 DB9 接头端口定义

外接控制器串口接入背面板左上角总串口输入接口后,在下方的串口级联输出接口会有相同的串口数据发送或接收,其他8个子串口接口会根据数据内容在相应的接口有数据的发送和接收。前面板的串口发送和接收指示灯用于指示 EXB-C8I8 设备串口的数据发送和接收,不区分具体使用的串口接口,也不区分发送的数据是否符合控制协议要求。指示灯闪烁的频率可以用来指示数据收发频率。

EXB-C8I8 主串口波特率为 9600bps, 8 位数据, 1 位停止位, 没有校验位。

3.4 子串口设置

EXB-C8I8 背面板 8 路子串口为独立的 RS232 双向接口。当通过 8 个子串口发送数据时,控制协议为:

起始符	设备 ID	功能选择	串口序号	格式字节	数据长度	数据	结束符
CA(16 进	01-0F	16(16 进	1 0	田主り	参见下文	参见	AC(16 进
制)	01 ⁻ 0F	制)	1-8	见表 2	<u>参</u> 见下又	下文	制)

表1 串口控制协议

所有数据需要按 16 进制发送,整条命令最多不能超过 256 个字节。数据长度字段指要发送的数据的长度,不包括协议附带字段。例如发送为 CA 01 16 01 40 05 90 AA 10 34 56 AC 表示发送给设备地址为 1 的设备的第 1 个串口,格式字节为 40,发送数据为 90, AA, 10,34,56 这 5 个字节,数据长度即为 5。

格式字节定义为: bit7, bit6, bit5, bit4 对应不同的波特率, bit3 表示有无校验位, bit3 为 1 表示有校验位, bit3 为 0 表示没有校验位, bit2 为 1 表示 2 位停止位, 为 0 表示 1 位停止位, bit1, bit0 对应不同的校验方式。高四位具体的波特率对应关系见下表:

bit7	bit6	bit5	bit4	串口波特率 (bps)
0	0	0	0	153600
0	0	0	1	76800
0	0	1	0	38400
0	0	1	1	19200
0	1	0	0	9600
0	1	0	1	4800
0	1	1	0	2400
0	1	1	1	1200
1	0	0	0	460800
1	0	0	1	230400
1	0	1	0	115200
1	0	1	1	57600
1	1	0	0	28800
1	1	0	1	14400
1	1	1	0	7200
1	1	1	1	3600

表 2 格式字节高四位和串口波特率对应关系

格式字节 bit1, bit0 与校验方式的对应关系为:

Bit 1	Bit 0	校验方式
0	0	0 校验
0	1	奇校验
1	0	偶校验
1	1	1 校验

表 3 格式字节 bit1, bit0 与校验方式对应关系

当设备 ID 字段为 0 时,所有的设备都可以接收该命令。串口命令如果发送成功,EXB-C8I8 默认不会发送回复数据包,可通过以下命令进行更改。该设置不会进行保存,每次重新上电之后需重新设置。表 4 中 ID 表示设备地址。

命令	功能	设置成功回复
CA ID 15 16 01 AC	禁用串口发送命令成功后回复	CA ID 15 01 AC
CA ID 15 16 02 AC	使能串口发送命令成功后回复	CA ID 15 01 AC

表 4 设置串口回复数据包禁用与使能命令

使能串口发送成功回复以后,串口数据发送成功会返回 CA ID 16 01 AC。 串口发送成功回复功能只对于子串口的数据发送有效,并不影响 IO 和红外复 用端口输入命令时的反馈回复。

如果子串口只是作为接收数据使用,可以按发送数据命令发送任意长度数据(整条命令不能超过256个字节),进行串口波特率等参数的设置。子串口接收到数据时,会将数据返回给主串口,返回的数据为原始接收到的数据。

3.5 输入输出设置

EXB-C8I8 背面有 8 路独立的输入输出和红外复用端口,采用 2pin 凤凰头接口。接口的定义为:

图 6 端口连接方式

输入输出端口的配置命令格式为:

起始符	设备 ID	功能选择	输入输出选择	触发方式	数据	结束符
CA(16 进制)	01-0F	17(16进制)	参见下文	见表 6	参见	AC(16 进制)
					下文	

表 5 输入输出端口配置命令

所有数据以 16 进制发送。输入输出选择字段用来选择输入或输出方式,以及配置使用的端口。当输入输出字段 bit7 为 0 时,表示输出,为 1 时表示输入,bit3,bit2,bit1,bit0 用于选择使用的端口,0001 表示使用端口 1,1000 表示使用端口 8,依此类推,其他位可为任意值。触发方式字段用于设置输入时的触发方式,输出模式时可以为任意值。触发方式字段和触发方式之间的关系见下表。

触发方式字段值	触发方式
01	高电平触发
02	低电平触发
03	上升沿触发
04	下降沿触发

表 6 触发方式字段和触发方式对应关系

数据字段当设置为输出时,1表示持续输出高电平,0表示持续输出低电平,当配置为输入时,可为任意值。当设备 ID 字段为 0 时,所有的设备都可以接收该命令。

例子: CA 01 17 01 00 01 AC,表示设备 1 第一个输入输出端口配置为输出,输出高电平。CA 01 17 81 02 00 AC,表示设备 1 第一个输入输出端口配置为输入,低电平触发。

当输入输出端口配置为输出,配置成功时会有返回数据。返回数据格式为:

起始符	设备 ID	功能选择	配置成功固 定返回	结束符
CA	01-0F	17	01	AC

表 7 输出配置成功返回数据格式

当输入输出端口配置为输入,配置成功或端口按设定模式触发时,会有返回数据。返回数据格式为:

起始符	设备 ID	功能选择	端口号	触发标志	结束符
CA	01-0F	17	01-08	参见下文	AC

表 8 输入配置成功以及触发返回数据格式

触发标志字段为00时,表示该端口没有触发,为01时,表示该端口已触发。

3.6 红外学习和发送

EXB-C818 前面板数码管和按键用于红外学习,最多支持存储 99 条红外码。 要学习某条红外码,首先用红外学习序号增加和减小按键调整到要使用的序 号,然后按开始学习按键。开始学习按键按下以后,开始学习指示灯亮,此时 序号增加和减小按键不可用,可以开始红外学习。将红外遥控器遥控发射窗口 对准 EXB-C8I8 的红外接收窗口,按下需要学习的按键。可多次重复按键,以 提高学习成功率,应避免长按按键,不利于红外学习。学习过程中接收到数据 时,红外数据状态指示灯会闪烁。当学习成功以后,红外学习成功指示灯会亮, 红外数据状态指示灯和开始学习指示灯灭,此时可以使用序号增加和减小按 键,再按下开始学习按键进行下一个按键的学习。学习成功以后数据会自动保 存在 EXB-C8I8 中, 重复学习某一序号会覆盖之前的学习内容。建议每个序号 对应学习的功能进行记录避免遗忘。进入学习状态 15 秒如果没有进行学习会 自动退出学习状态,或者15秒以内没有学习并再次按下开始学习按键,退出 学习状态。此时如果要重新学习请再按开始学习按键。学习成功时,会在主串 口接收到反馈回的学习到的红外码,目前只支持 NEC、konka、SONY SIRC、 TCL-RC199 编码格式的解码,解码成功,则数码管会显示学习的红外码对应编 码格式的序号

- "-1" ——NEC 格式 (1 位结束码)
- "-2" ——TCL RC199
- "-3"——SONY SIRC (20 位)
- "-4" ——konka
 - "FF"——其他未设定的编码格式(但仍具有相应功能)

主串口会接收到反馈回的红外码,格式为:

起始符	红外编码方式序号	分隔符	红外码	结束符
CA(16 进制)	01-04	FF	$XX \cdots XX$	AC(16 进制)

表 9 主串口返回学习到红外码的命令格式

红外编码方式序号与数码管显示的向对应。若接收的红外编码格式正确,但是数据有误(或有某种类似但并不完全一样的编码格式的学习),则返回的

红外编码方式序号对应为F1、F2、F3、F4

EXB-C8I8 还支持主串口输入学习红外码,主串口发送的协议格式如下:

起始符	设备 ID	功能 选择	学习的红外 码的编码格 式序号	红外码学习 到的存储位 置序号	红外码 长度	具体红外码	结束 符
CA(16 进制)	01-0F	19(16 进制)	XX	0x01-0x63	N	XX···XX	AC(16 进制)

表 10 主串口输入学习红外码命令格式

学习的红外码的编码格式序号对应为:

- 01——NEC 编码格式, 1 位结束位, 如果设备有额外结束位, 需在学习红外码时连同码值一起学习(注意红外码长度也有改变)。
 - 02——TCL RC199 编码格式,附带 1 位结束位,连续发送 2 次红外码。
- 03——SONY SIRC (20 位)编码格式,附带结束位,自动连续发送 2 次红外码。
 - 04——konka K25 遥控编码格式,附带结束位,自动连续发送 2 次红外码。 其他方式暂时不能进行主串口发送红外码的学习。

学习成功时,主串口会收到反馈数据: CA ID 19 XX AC (XX 代表学习的编码格式序号,学习错误反馈为 FF)。学习成功,数码管也会显示对应的红外编码方式的序号 01——"-1",02——"-2",03——"-3",04——"-4",错误——"no"。

学习成功之后,只需在红外端口连接红外发射棒,按下面的方式发送对应 红外发送通道的相应命令,即可由红外发射棒发射对应的红外码,单独用 EXB-C8I8 实现学习到的遥控器按键的功能。

学习成功以后,发送序号为 N 的红外码的命令为:

起始符	设备 ID	功能选择	红外发送通道	序号	结束符
CA (16 进制)	01-0F	18 (16 进制)	01-08	N	AC(16 进制)

表 11 发送红外码命令格式

所有数据以 16 进制发送(所以 N 的范围为 0x01-0x63)。例如 CA 01 18 01 01 AC 表示设备 1 从红外通道 1 发送序号为 1 的红外码。当设备 ID 字段为 0 时,所有的设备都可以接收该命令。命令发送成功以后会返回回复数据,格式

为 CA ID 18 01 AC (ID 为设备地址)。

3.7 其他命令

EXB-C818 还支持其他一些命令,用于工程调试以及查询状态使用。具体 支持的其他命令见表 12。

命令	功能	返回数据
CA ID 14 01 AC	查询设备固件版本号	CA ID 14 XX AC (XX 为查询的固件版
		本号)
CA ID 14 02 AC	设置设备地址是否随拨	开启: CA ID 14 02 AC(当前为立即生
(重复输入指令以切换	码开关改变立即生效	效)
开启与关闭状态)		关闭: CA ID 14 03 AC (当前为需重
		新上电才能生效)

表 12 其他支持的命令

《完》